[全国大联考]2024届高三第三次联考[3LK·数学-QG]试题核对正在持续更新,目前2025届群力考卷答案网为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。
本文从以下几个角度介绍。
1、2024全国大联考高三第四次数学
2、2024全国大联考高三第四次答案
3、2024全国大联考高三第四次试卷
4、全国大联考2024高三第三次数学答案
5、2024全国大联考第三次数学
6、高三全国大联考2024第四次
7、全国大联考2024高三第三次联考数学
8、全国大联考2024高三第三次联考数学答案
9、2024全国大联考高三第四次
10、2024全国大联考高三第四次联考

(3)由(2)可得E(X)=2×号+1×器+0×品-8的两种中至少有“一药”,事件B表示选出的两种中至少有“一方”,依题意得Y~B(2,号),则Y的可能取值为0,1,2.则r)-SCS=告,PAB)-S=是,做PB1A)3P(AB)5=3P(A)4-0-(1专)°-5故Y的分布列为6C【解析】由题黛,设BD-1,则1nD-品-2,解得AB=2,则AD02√AB2+BD2-√5,所以AC-√5-1,2号因为R△ABD的面积S△D=号AB·BD=1,扇形ACE的面积S≈x·W5-1)2.90°63°_(9-35)z所以Y=2XA=&,所以FY)=(X.360°205-510.【解析】(1)由题意得,某同学第二天选择餐厅甲就餐的概率P=3所以所求概率约为5⑨一35区.族选C20×+日×-【解析】由题意知1-》·p=是〔0<1),所以力=号某铜学第二天选择餐厅乙就餐的版率P。=号×子+子×日-号,12所以每局比赛甲胜的概率为号,乙胜的概率为子.由题意知随机变量所以3位同学第二天选择餐厅甲就餐的人数X~B(3,号),X-B(6,号)所以DX)=6×号×号=号PX=)=-CG(3)(号)h=0.1,2.3.8【解析】若仅A一人是最高得票者,则A的票数为3或2.C31所以X的分布列为若A的票数为3,则P=3一270若A的票数为2,则B,C,D三人巾有两人投给A,剩下的一人与A不能投同一个人,则P,-CC+cA4且E(X)=3X334745(2依题意得,P1=P,×十(1-P.)×合,即P+1=所以仅A一人是最高得票者的概率P=P,十P,=27十27=27(m∈N),9.2【解析】设P(x,y),则点Mx,0),y=1-号(3)由(2)知P+1--P.十(∈N),则P+1-号在椭圆之+y2=1(m>1)中,a=m,b=1,c=√m2-1,F(-c,是(p.-号)a∈N)0),F2(c,0)PF=(-c-x,-,PF2=(c-x,-y),当1时,可得P一号=号-号=则P丽P=(-0-)c-x)+(-w2=2+y2-2=2+1-所以数列{P。一号}是首项为是公比为一4的等比数列,.-(m2-1)<0,所以卫,台-是()脚卫,=号培()”m2
0,所以m=2.10.【解析】(1)设考生成绩为X,则由题意可知X服从正态分布,即X1.B【解析】设牛形图案的面积为S,则由题意可得S。75π·2=100,解得SV(180,o2),30=3π.令Y=X-180,则Y~N(0,1),所以可得P(X≥360)=20002.A【解析】设甲获胜的局数为Y,则Y~B(5,号),X=10Y,2品PX<380)=128=0.985,P(y<360,189)0.985,所以DX)=100DY)=100×5×3×号=120.又因为P(Y<2.17)≈0.985,所以360-180≈2.17,0≈83,XV(180,832).3.A【解析】由题意得P(>1)=1-P(1)=1-0.84=0.16,所以P(-1<≤0)=7×(1-0.16×2)=0.34.设能低录取分效为周PX≥)=P(3)=测员,4.D【解析】因为(x十1)5-a十a1(a-1)十…十a(x-1),P()=1高83≈1.04,所以x,≈266.32,所以(.x+1)=[2+(x-1)]6=a十a1(x-1)+…+a(x-1)°,即最低录取分数线为266分或267分,所以展开式中含(x-1)3的项为C·23·(x-1)3=160(x-1)3,所以(2)考生甲的成绩为286分>267分,a3=160.5.D【解析】若某医生从“药三方”中随机选出两种,事件A表示选出所以甲能被录取概率为P(X<286)=P(y<286180)≈P(Y<8323XKA·数学(理科)·193·